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Eicosapentaenoic acid and docosahexaenoic acid inhibit macrophage-induced gastric
cancer cell migration by attenuating the expression of matrix metalloproteinase 10
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Abstract

Uptake of docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) improves the treatment of cancer and reduces tumor-associated macrophage count.
However, the mechanism of this relationship is still unclear.

In this study, macrophages enhanced gastric cancer cell migration ability and induced the differentially expressed matrix metalloproteinase genes
(MMP1, MMP3 and MMP10) of N87 as identified by polymerase chain reaction array. Furthermore, DHA and EPA inhibited macrophage-enhanced cancer cell
migration and attenuated MMP10 at both the RNA and protein level. The suppression of MMP10 expression was further verified by zymography and
antibody blocking experiments. Additionally, DHA and EPA attenuated expression of macrophage-activated extracellular-signal-regulated kinase (ERK) and
signal transducers and activators of transcription 3 (STAT3) in cancer cells. Attenuation was verified by demonstrating blockade with specific inhibitors
and thereby increased MMP10 expression.

Accordingly, we hypothesized that macrophage enhances cancer cell migration through ERK and STAT3 phosphorylation and subsequent increased MMP10
expression and that DHA and EPA could attenuate these signals. These findings not only explain the beneficial effects of DHA/EPA, but also point to ERK/STAT3/
MMP10 as the potential targets for gastric cancer treatment.
© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Gastric cancer (GC) is the fourth most common cancer worldwide,
and almost two thirds of affected individuals will die of their disease
[1]. In the majority of tumors, the tumor cell and the macrophage
appear to have a symbiotic relationship, with the tumor cell attracting
macrophages and prolonging their survival and with the tumor-
associated macrophages (TAMs) producing a myriad of factors to
promote tumor growth andmetastasis [2]. Clinical studies have shown
a positive correlation between abundant TAMs and poor prognosis
and identified “degree of macrophage infiltration into the cancer cell
nest” as a significant predictor of survival in GC patients [3].

It has been suggested that increasing one's intake of eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA), the two main n-
3 polyunsaturated fatty acids (n-3 PUFAs), may reduce the risk of
chronic diseases [4]. DHA affects cell membrane fluidity and
permeability and modifies the activities of cell membrane receptors
and enzymes [5,6]. In vitro and animal studies indicate that PUFAs
suppress colon carcinogenesis by inducing apoptosis [7]. High-dose
DHA has been shown to induce apoptosis in GC cells [8] and reported
to reduce migration of Treg cells [9]. It thus appears that supplemen-
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tation with n-3 PUFAs might be a promising therapy for conditions
characterized by inappropriate proinflammatory activity [10].

However, the relation of TAMs and GC cells, and the possible
effects of DHA and EPA are still unclear. Herein, we present the first
evidence in support of the hypothesis that macrophages enhance GC
cell migration, and that DHA and EPA inhibit this activity. Moreover,
we show that this inhibitory activity might be, in part, mediated by
down-regulation of the extracellular-signal-regulated kinase (ERK)
and signal transducers and activators of transcription 3 (STAT3)
pathways which, in turn, attenuates matrix metalloproteinase 10
(MMP10) expression.

2. Methods and materials

2.1. Cell culture

GC cell lines AGS, N87, MKN45 and TSGH and the monocyte cell line THP-1 were
grown in RPMI-1640 (Sigma-Aldrich, St. Louis, MO, USA) medium supplemented with
10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml penicillin and 100 μg/ml
streptomycin sulfate at 37°C in a humidified atmosphere of 5% CO2–95% air, according
to the supplier's (American Type Culture Collection, Manassas, VA, USA) recommen-
dations. Adherent cells were detached from the culture dishes with trypsin-EDTA.

THP-1 cells were seeded into culture dishes and induced to differentiate into
macrophages by incubation with 100 ng/ml 12-O-tetradecanoylphorbol-13-acetate
(TPA, Sigma) for 24 h. The macrophages were washed three times with RPMI medium
containing 10% FBS, incubated in this medium for another 24 h to eliminate the effect of
TPA and incubated in serum-free media for another 24 h. The harvested and pooled
culture supernatants were used as macrophage conditioned medium (CM) as
described before [11].
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Fig. 2. PCR array analysis of the effect of macrophage CM treatment. N87 cells were
cultured in the presence or absence of macrophage CM for 6 h. Extracellular matrix and
adhesion molecule mRNAs were analyzed by PCR microarray (SA Biosciences). Fold
change greater than 3.33 is indicated as significant.
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2.2. In vitro migration assay

Cell migration assays were performed using modified Boyden chambers with filter
inserts (pore size 8 μm) in 24-well dishes. Tumor cells were placed in the upper
chambers, and the CM from macrophages with/without treatments was added to the
lower chambers. Treatments included DHA (Sigma), EPA (Sigma) and neutralizing
anti-human-MMP10 antibody (R & D Systems, Minneapolis, MN, USA). After overnight
exposure, the cells in the upper chamber were fixed with methanol, stained with 1%
crystal violet and counted under a microscope.

2.3. Cell viability assay

The cytotoxicity of DHA and EPA was determined by a colorimetric assay using
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich).
GC cells were co-culturedwith various concentrations of DHA and EPA for 24 h, and their
viability was determined using a standard MTT protocol.

2.4. RNA extraction, polymerase chain reaction (PCR) array and reverse
transcriptase (RT)-PCR

After culture with macrophage CM for 6 h, GC cells were collected, and their total
RNA was extracted using a Trizol reagent kit (Invitrogen, Carlsbad, CA, USA) following
themanufacturer's instructions. Extracellular matrix and adhesionmolecule PCR arrays
(SA Biosciences, Frederick, MD, USA) were performed according to a previously
described protocol [12]. Total RNA (3 μg) was reverse transcribed using oligo(dT)
primers and M-MLV reverse transcriptase (Invitrogen). cDNAs were amplified by PCR
using primers for MMP1, MMP3, MMP10 [13], ITGAM, ITGB1 and GAPDH. The
inhibitors U1026, LY294002 (Sigma) and STAT3 Inhibitor V (Stattic; Merck, Darmstadt,
Germany) were used to determine the interaction between the MAPK and STAT3
pathways and MMP10 RNA expression.

2.5. Western blot analysis

Cells were washed with phosphate-buffered saline, scraped into radioimmuno-
precipitation assay buffer and centrifuged. The supernatants (cell lysates) were
subjected to 10% sodium dodecylsulfate–polyacrylamide gel electrophoresis and
transferred to polyvinylidene fluoride membranes (Millipore Corp., Bedford, MA,
USA). The membranes were stained using primary antibodies specific for MMP10 (R&D
Systems), β-actin, ERK, p-ERK, Akt, p-Akt (Santa Cruz Laboratories, Santa Cruz, CA,
USA) and p-STAT3 (Cell Signaling, Beverly, MA, USA) and then a secondary antibody
(Santa Cruz). Specific signals were visualized using a chemiluminescence detection
system (Amersham Bioscience, Buckinghamshire, England).

2.6. Zymography

Gelatinase activity was measured in conditioned medium by zymography. This
procedure has been shown to estimate both proenzyme and activated MMP enzyme
activity. Equal amounts of conditioned medium were subjected to electrophoresis on
10% zymography gels containing 0.1% gelatin (Novex, San Diego, CA, USA). Gels were
washed with renaturing buffer (Novex) for 30 min, incubated in developing buffer
(Novex) overnight at 37°C and stained with Coomassie blue.

2.7. Statistical analysis

Results are presented as mean±standard error of the mean (S.E.M.). All statistical
analysis was conducted using the statistical package SPSS 13.0. The significance of
Fig. 1. The migration ability of GC cells treated by macrophage CM. Four GC cell lines
(AGS, MKN45, N87 and TSG1) were seeded into Boyden chambers and co-cultured
with or without macrophage cells or macrophage CM for 24 h. The ability of each cell
line to migrate was measured by a Boyden chamber-based migration assay after 24 h of
incubation. All data are expressed as the arithmetic mean±S.E.M. ⁎⁎Pb.01.
differences was evaluated using the Student's t test and one-way analysis of variance.
Values of P were considered to be statistically significant if Pb.05, ⁎⁎Pb.01.

3. Results

3.1. Macrophage induces gastric cancer cell migration

Analysis of themigration of four gastric cancer cell lines (AGS, N87,
MKN45 and TSGH) found an almost twofold increase in activity after
co-culture with macrophage or treatment with CM for 24 h (Fig. 1).

3.2. PCR array identified differentially expressed genes of N87 cells after
co-culture with macrophage

PCR array was used to identify genes up-regulated by exposure to
macrophage CM. Three genes (MMP1, MMP 3 and MMP 10) were
significantly up-regulated (27-, 160-, and 18-fold, respectively) after
treatment (Fig. 2A and B). The up-regulation of these genes was later
verified at the RNA and protein levels (Fig. 4).

image of Fig. 2


1436 M.-H. Wu et al. / Journal of Nutritional Biochemistry 23 (2012) 1434–1439
3.3. DHA and EPA inhibited migration of N87 cells

DHA and EPA were shown to induce apoptosis of human gastric
cancer cells [8,14]. To verify the effect of low-dose DHA and EPA on GC
cell (N87) migration and viability, cells were treated with various
doses of DHA and EPA (0–50 μM) for 24 h. MTT assay (Fig. 3A) found
that 80% of cells remain viable in the presence of 5 μM DHA and EPA.
Fig. 3. Effect of DHA and EPA on gastric cancer cells treated with macrophage CM. (A)
The viability of N87 cells treated with macrophage CM and DHA or EPA at various doses
(0, 0.5, 1, 3, 5, 7, 10 and 50 μM) for 24 h was determined by MTT assay. The ability of
cells exposed tomacrophage CM and various doses (0, 0.05, 0.1, 1 and 5 μM) of DHA (B)
or EPA (C) to migrate was measured in vitro after incubation in Boyden chambers for
24 h. All data are expressed as the arithmetic mean±S.E.M. ⁎Pb.05; ⁎⁎Pb.01.
CM-induced N87 cell migration was dose-dependently suppressed by
DHA (0–5 μM) from 207% to 29% (Fig. 3B) and EPA (0–5 μM) from
207% to 35% (Fig. 3C) but not the n6-PUFA arachidonic acid (5 μM),
indicating that DHA and EPA significantly inhibit macrophage-
activated cell migration. We have conducted the migration study
with AGS cell line also and found that DHA and EPA inhibited
migration abilities of not only N87 but also AGS. The two cell lines
have the same trend of behavior in the experimental model of this
study (data not shown).

3.4. DHA and EPA inhibit macrophage-activated cell migration by
down-regulation of MMP10

To determine whether DHA and EPA inhibited macrophage-
activated gastric cancer cell migration by down-regulating the
expression of genes identified as significantly up-regulated by PCR
microarray (i.e., MMP1, MMP3 and MMP10), the levels of the
corresponding RNAs in CM-treated cells were measured before and
after exposure to 5 μMDHA and EPA for 24 h. OnlyMMP10was down-
regulated (Fig. 4A). Similarly, MMP10 protein expression (assayed by
Western blot using anti-MMP10 antibodies) showed 25% and 41%
down-regulation in the presence of 5 μM DHA and EPA, respectively
(Fig. 4B). Furthermore, zymography showed that MMP10 activity in
culture medium collected after 24-h treatment with 5 μM DHA and
EPA was significantly decreased compared with CM only (Fig. 4C),
indicating that both DHA and EPA inhibited MMP10 gene expression
and decreased secretion of pro-MMP10 and active MMP10. To further
confirm the relationship between migration and MMP10, the ability
of neutralizing antibody to block MMP10 activity was tested. Cell
migration was significantly decreased from 248% to 78% by pretreat-
ment with 10 μg/ml anti-MMP10 (Fig. 5), suggesting the involvement
of MMP10 in macrophage-activated GC cell migration.

3.5. DHA- and EPA-mediated decrease in MMP10 expression might lead
to the down-regulation of the ERK and STAT3 pathways

It was reported that AKT and MAPK are involved in many signal
transduction pathways [15], macrophage-conditioned medium trig-
gers the ERK cascade [16], and expression of MMP10 is regulated by
the ERK [17] and STAT3 pathways [18]. In this study, macrophage CM
induced ERK, AKT, JNK and STAT3, and DHA and EPA attenuated
phosphorylation of ERK, AKT and STAT3 (Fig. 6A). To confirm the
interaction between the MAPK/STAT pathway andMMP10, cells were
pretreated with the ERK inhibitor (U0126), AKT inhibitor (LY294002)
or STAT3 inhibitor (Stattic). MMP10 RNA expression was significantly
inhibited by U0126 and Stattic (Fig. 6B), suggesting that MMP10 was
regulated by ERK and STAT3 but not AKT.

4. Discussion

TAMs play an important role in malignancy. Most reports show a
significant correlation between the density of TAMs and poor
prognosis [2]. In the present study, macrophage and macrophage
CM caused a significant increase in GC cell migration. It has been
reported that recruitment of TAMs is due to cancer-cell-mediated up-
regulation of host stromal cell production of colony-stimulating
factor-1 [19]. TAMs stimulate tumor growth, produce angiogenic
factors [20] and facilitate vascular invasion of tumor cells [21,22]. It
has also been reported that the invasiveness of tumors co-cultured
with macrophages is enhanced by tumor necrosis factor-α and MMPs
released from macrophages [23–26].

Lipids are not only a source of energy, but some lipids modulate
metabolic and inflammatory responses. N-3 PUFAs are preferentially
incorporated into cell membrane phospholipids, influence secondary
messenger synthesis andmodulate the expression of certain adhesion
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Fig. 4. Effect of DHA and EPA on MMP mRNA and protein expression. N87 cells in the presence or absence of macrophage CM were treated with or without 5 μM of DHA or EPA. (A)
mRNA level was measured by RT-PCR in cells collected after 6 h of treatment. (B) Protein level was measured by Western blot in cells collected after 24 h of treatment. Western blot
data are expressed as the arithmetic mean±S.E.M. ⁎Pb.05; ⁎⁎Pb.01. (C) Activity of MMPs released into the conditioned medium by 24-h exposure to fish oil was measured by gelatin
zymography; fish oil treatment resulted in decreased activity of both pro and active MMP10 (lane 1, macrophage conditioned medium control and untreated N87 cells; lane 2, control;
lane 3, macrophage conditioned medium; lane 4, macrophage conditioned medium with DHA 5 μM; lane 5, macrophage conditioned medium with EPA 5 μM).
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molecules at the surface of endothelial cells, monocytes and
lymphocytes [27–30].

In our study, two major n-3 PUFAs, DHA and EPA, significantly
inhibited TAM-activated migration of GC cells. It is compatible with
previous results where n-3 PUFAs has been shown to trigger
anticancer activity in cell models [31,32]. In either case, the
mechanisms are of obvious interest clinically even if some random-
ized controlled trials found little evidence showing that higher intake
of omega 3 fatty acids affects the incidence of cancer [33]. It is likely
that suppression of tumor cell growth by n-3 PUFAs is due to a
combination (rather than one) of thesemechanisms [32,34–37]. It has
been proposed that n-3 PUFAs included in the diet are incorporated
into cell membranes of normal and tumor tissues where they serve as
substrate for COX-2 and inhibit the expression of the inflammation-
producing and growth-promoting prostaglandin E2 [37]. As cancer
growth depends on development of new blood vessels to supply
nutrients and to remove wastes, inhibition of angiogenesis may
inhibit or limit tumor growth [38–41].
Fig. 5. Effect of MMP10 neutralizing antibody on migration of GC cells. N87 cells
exposed to macrophage CM for 24 h were treated with different concentrations of
MMP10 neutralizing antibody (0, 1.25, 2.5, 5 and 10 μg/ml) for 30 min. Isotype IgG was
used as a blocking control. All data are expressed as the arithmetic mean±S.E.M.
⁎Pb.05; ⁎⁎Pb.01.
MMPs induce extracellular matrix breakdown to permit normal
tissue remodeling and are involved in tissue destruction in arthritis,
cancer invasion and metastasis [42,43]. Microarray analysis showed
that co-culture with macrophages up-regulates the expression of
MMPs in gastric cancer cells [44]. In this study, PCR microarray
revealed significant up-regulation of MMP1, MMP3 and MMP10 in
gastric cancer cells treatedwithmacrophage CM. The up-regulation of
MMPs was confirmed by RT-PCR and Western blot. Interestingly,
macrophage CM-induced up-regulation of MMP10 (but not MMP1
and MMP3) was significantly attenuated in the presence of DHA and
EPA. MMP10 is expressed in epithelial cells [45] but not in fibroblasts
[46,47]. Overexpression ofMMP10 has been reported in cancers of the
lung, head and neck [48], esophagus [49,50], brain [51] and liver [52].
It was demonstrated that MMP10 is a goodmarker for detection of GC
and is a prognostic factor for GC [53]. MMP10 activates proMMP7 and
proMMP9 [54], which are thought to be particularly important for the
malignant behavior of GC cells [55,56]. Thus, MMP10-specific
inhibitors may have a role in the treatment of various types of
cancer, including GC. MMP10 expression was modulated through
transcriptional regulation in most cases [57–59]. To date, there is no
known posttranscriptional modification of MMP10. However, ex-
pressions of other MMPs were known to be suppressed through
miRNA-dependent translational suppression. For example, transla-
tional activity of MMP2 was suppressed by miR29b binding, and
MMP9 was suppressed through miR491-5p [60,61]. MMP10 might
also be regulated in a similar way. The involvement of MMPs in cancer
invasion and metastasis has been reported [42]. In our study, GC
migration was significantly inhibited by MMP10 neutralizing anti-
body. MMP10 is important in modulating basement membrane
degradation and thereby may facilitate tumor progression [62–65].
Therefore, MMP10 could be a target for GC therapy.

Several studies have indicated that the signaling proteins
including MAPK members, PI3K and AKT are involved in the
expression of MMPs and including metastasis [66–69]. In order to
evaluate whether DHA or EPA mediates and/or inhibits the MAPK
members and AKT, the effect of DHA or EPA on the phosphorylated
status of ERK 1/2, JNK 1/2 and AKT in gastric cancers was investigated.
In this study, macrophage CM induced ERK, AKT, JNK and STAT3, but
DHA/EPA only attenuated phosphorylation of ERK, AKT and STAT3.

image of Fig. 4
image of Fig. 5


Fig. 6. Effect of DHA and EPA on the MAPK pathway. N87 cells exposed to macrophage CM for 30 min were treated with 5 μMDHA or EPA for 1 h. (A) Rates of ERK, AKT, JNK and STAT3
phosphorylation were determined byWestern blot. (B) The effect of inhibitors LY294002, U0126 and STAT3 inhibitor (10 μM for 1 h) on the expression of theMMP10 gene in N87 cells
exposed to macrophage CM for 6 h was determined by RT-PCR. All data are expressed as the arithmetic mean±S.E.M. ⁎Pb.05; ⁎⁎Pb.01.
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We also confirm the involvement of ERK, AKT and STAT in DHA/EPA-
inhibited MMP-10 expression by specific inhibitors (Fig. 6B). Our
results indicate that DHA and EPA regulate MMP-10 through
suppressed phosphorylation of ERK and STAT3 but not AKT and JNK.

It is consistentwith the recent report thatmacrophage-conditioned
medium triggers the ERK pathway [16], which regulates MMP10
expression [17]. Moreover, it has been shown that STAT3 activation
plays a role not only in MMP1 and MMP10 induction by epidermal
growth factor in T24 bladder cancer cells [70], but also in interleukin-6
mediated MMP10 expression in human lung adenocarcinoma cancer
cell lines [18]. In our investigation, phosphorylation of ERK and STAT3
was induced bymacrophage CM and attenuated by both DHA and EPA,
suggesting that the attenuation of TAMs-induced MMP10 expression
by n-3 PUFAsmight bemediated throughMAPK and STAT3 regulation.
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